WOLFRAM NOTEBOOK

Please run code at bottom for session.

Electron Mass

In[1973]:=
𝑚=(9.109383701321978*
-31
10
Kilograms)
In[215]:=
4𝐺ɢ(𝑚^4)1+(18bn)
L
LL
^6Ж^3Ж^3Ж^3
Out[215]=
(9.10938×
-31
10
+0.)
4
Kilograms
In[1972]:=
(9.109383701321978*^-31 + 0.*I)*Kilograms^4
Assuming kilograms for "Kilograms" | Use
kilograms-force
instead
Input interpretation:
(9.109383701321978
-31
10
+0)
4
kg
(kilograms to the fourth)
Result:
(9.109×
-31
10
+0)
4
kg
(kilograms to the fourth)

Electron Mass: https://physics.nist.gov/cgi-bin/cuu/Value?me

Muon Mass(𝑚𝛍)

In[2862]:=
𝑚𝛍=(1.883531621183985*
-28
10
Kilograms)
In[216]:=
b 𝐶ǫ Ж^2 Ж (A)1+(b/4) (18/(2Pi))(Ж^2 -Ж^2 -Ж^2)
Out[216]=
(1.88353×
-28
10
+0.)Kilograms
In[2807]:=
(1.883531621183985*^-28 + 0.*I)*Kilograms
Assuming kilograms for "Kilograms" | Use
kilograms-force
instead
Input interpretation:
(1.883531621183985
-28
10
+0)kg(kilograms)
Result:
(1.884×
-28
10
+0)kg(kilograms)

Muon-Electron Mass Ratio

In[217]:=
𝑚𝛍𝑚
Out[217]=
206.768
In[3451]:=
206.76828234940217
Input interpretation:
206.76828234940217
Number line:
Rational form:
20676828234940217
100000000000000
= 206 +
76828234940217
100000000000000
Number name:
two hundred six point seven six eight two eight two three four nine four zero two
Continued fraction:
Fraction form
[206; 1, 3, 3, 5, 1, 13, 1, 1, 4, 2, 3, 1, 1, 4, 2]
Possible closed forms:
More
12319
275
+
7287
275
+56206.7682823494021702618
-68-239
π
+9π+278
3/2
π
+285
2
π
6π
206.768282349402168384
π
root of 2
5
x
-129
4
x
-173
3
x
-17
2
x
-96x+169 near x65.8164
206.76828234940223465

Muon Mass: https://physics.nist.gov/cgi-bin/cuu/Value?mmu|search_for=muon

muon-electron mass ratio: https://physics.nist.gov/cgi-bin/cuu/Value?mmusme

These closed forms of the Planck constants were found on using Wolfram Alpha with the claim that the magnitudes of exponentiation are derangements(permutations/action) involved with each boundary.

Planck time: https://physics.nist.gov/cgi-bin/cuu/Value?plkt|search_for=planck

In[4]:=
(sinh(sinh(1/7)))^-1 e^x=7*5

Planck length: https://physics.nist.gov/cgi-bin/cuu/Value?plkl|search_for=planck

In[6]:=
(5/(Weierstrass constant * sqrt7 *(3)^(1/3)))e^x=2(3 )^2

Planck Charge: https://en.wikipedia.org/wiki/Planck_units https://www.wolframalpha.com/input?i=planck+charge

In[8]:=
(2pi5)((cos(7/5))^2) e^x=8

Planck mass: https://physics.nist.gov/cgi-bin/cuu/Value?plkm|search_for=planck

In[10]:=
2cosh(log7)(cosh(5/2))^2 (cos(7/5))^2 e^x=32

Planck temperature: https://physics.nist.gov/cgi-bin/cuu/Value?plktmp|search_for=planck

Planck Constants - Our Dimensional Ingredients

The Hyperbolic Möbius Connection Equation

In[1128]:=
(9.999991999736222*^-8*Kilograms*meters)/Coulombs^2

Mass

Electron Mass

In[1972]:=
(9.109383701321978*^-31 + 0.*I)*Kilograms^4

Atomic Mass Unit(amu)

In[2195]:=
1.6605390666064582*^-27*Kilograms
In[2416]:=
(1.6726219238799044*^-27 + 0.*I)*Kilograms
In[2639]:=
1.6749274965622474*^-27*Kilograms
In[2807]:=
(1.883531621183985*^-28 + 0.*I)*Kilograms

Code for session.

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.