Please run code at bottom for session.
Please run code at bottom for session.
Electron Mass
Electron Mass
In[1973]:=
𝑚ₑ=(9.109383701321978*Kilograms)
-31
10
In[215]:=
4𝐺ɢᵢ(𝑚ₚ^4)1+(18bn)^6Ж₁^3Ж₃^3Ж₄^3⊠
L
LL
Out[215]=
(9.10938×+0.)
-31
10
4
Kilograms
In[1972]:=
(9.109383701321978*^-31 + 0.*I)*Kilograms^4
Electron Mass: https://physics.nist.gov/cgi-bin/cuu/Value?me
Electron Mass: https://physics.nist.gov/cgi-bin/cuu/Value?me
Muon Mass(𝑚𝛍)
Muon Mass(𝑚𝛍)
In[2862]:=
𝑚𝛍=(1.883531621183985* Kilograms)
-28
10
In[216]:=
b 𝐶ǫ Ж₁^2 Ж₂ (Aₘₐₛₛ)1+(b/4) (18/(2Pi))(Ж₂^2 -Ж₃^2 -Ж₄^2)⊠
Out[216]=
(1.88353×+0.)Kilograms
-28
10
In[2807]:=
(1.883531621183985*^-28 + 0.*I)*Kilograms
Muon-Electron Mass Ratio
Muon-Electron Mass Ratio
In[217]:=
𝑚𝛍𝑚ₑ
Out[217]=
206.768
In[3451]:=
206.76828234940217
Muon Mass: https://physics.nist.gov/cgi-bin/cuu/Value?mmu|search_for=muon
Muon Mass: https://physics.nist.gov/cgi-bin/cuu/Value?mmu|search_for=muon
muon-electron mass ratio: https://physics.nist.gov/cgi-bin/cuu/Value?mmusme
muon-electron mass ratio: https://physics.nist.gov/cgi-bin/cuu/Value?mmusme
These closed forms of the Planck constants were found on using Wolfram Alpha with the claim that the magnitudes of exponentiation are derangements(permutations/action) involved with each boundary.
These closed forms of the Planck constants were found on using Wolfram Alpha with the claim that the magnitudes of exponentiation are derangements(permutations/action) involved with each boundary.
Planck time: https://physics.nist.gov/cgi-bin/cuu/Value?plkt|search_for=planck
Planck time: https://physics.nist.gov/cgi-bin/cuu/Value?plkt|search_for=planck
In[4]:=
(sinh(sinh(1/7)))^-1 e^x=7*5
Planck length: https://physics.nist.gov/cgi-bin/cuu/Value?plkl|search_for=planck
Planck length: https://physics.nist.gov/cgi-bin/cuu/Value?plkl|search_for=planck
In[6]:=
(5/(Weierstrass constant * sqrt7 *(3)^(1/3)))e^x=2(3 )^2
Planck Charge: https://en.wikipedia.org/wiki/Planck_units https://www.wolframalpha.com/input?i=planck+charge
Planck Charge: https://en.wikipedia.org/wiki/Planck_units https://www.wolframalpha.com/input?i=planck+charge
In[8]:=
(2pi5)((cos(7/5))^2) e^x=8
Planck mass: https://physics.nist.gov/cgi-bin/cuu/Value?plkm|search_for=planck
Planck mass: https://physics.nist.gov/cgi-bin/cuu/Value?plkm|search_for=planck
In[10]:=
2cosh(log7)(cosh(5/2))^2 (cos(7/5))^2 e^x=32
Planck temperature: https://physics.nist.gov/cgi-bin/cuu/Value?plktmp|search_for=planck
Planck temperature: https://physics.nist.gov/cgi-bin/cuu/Value?plktmp|search_for=planck
Planck Constants - Our Dimensional Ingredients
Planck Constants - Our Dimensional Ingredients
The Hyperbolic Möbius Connection Equation
The Hyperbolic Möbius Connection Equation
In[1128]:=
(9.999991999736222*^-8*Kilograms*meters)/Coulombs^2
Mass
Mass
Electron Mass
Electron Mass
In[1972]:=
(9.109383701321978*^-31 + 0.*I)*Kilograms^4
Atomic Mass Unit(amu)
Atomic Mass Unit(amu)
In[2195]:=
1.6605390666064582*^-27*Kilograms
In[2416]:=
(1.6726219238799044*^-27 + 0.*I)*Kilograms
In[2639]:=
1.6749274965622474*^-27*Kilograms
In[2807]:=
(1.883531621183985*^-28 + 0.*I)*Kilograms
Code for session.
Code for session.